Integrate a system of ODEs using the Fourth Order Runge-Kutta (RK-4) method
This module integrates a system of ordinary differential equations of the form

where
is a vector of length
. Given time step
, the Runge-Kutta 4 method integrates the ODE with update


For a similar adaptive method using the fifth order Cash-Karp Runge-Kutta method with fourth order embedded error estimator, see [https://github.com/scijs/ode45-cash-karp](ode45-cash-karp].
$ npm install ode-rk4
var rk4 = require('ode-rk4')
var deriv = function(dydt, y, t) {
dydt[0] = -y[1]
dydt[1] = y[0]
}
var y0 = [1,0]
var n = 1000
var t0 = 0
var dt = 2.0 * Math.PI / n
var integrator = rk4( y0, deriv, t0, dt )
// Integrate 1000 steps:
integrator.steps(n)
// Integrate all the way around a circle:
// => integrator.y = [ 0.9999999999995743, -8.160481752145232e-11 ]
require('ode-rk4')( y0, deriv, t0, dt )Arguments:
y0: an array or typed array containing initial conditions. This vector is updated in-place with each integrator step.deriv: a function that calculates the derivative. Format is function( dydt, y, t ). Inputs are current state y and current time t, output is the calculated derivative dydt.t0: initial time dt: time step Returns: Initialized integrator object.
Properties:
n: dimension of y0.y: current state. Initialized as a shallow copy of input y0.deriv: function that calculates the derivative. Initialized from input. May be changed.t: current time, incremented by dt with each time step.dt: time step dt. May be changed.Methods:
.step(): takes a single step of the RK-4 integrator and stores the result in-place in the y property..steps( n ): takes n steps of the RK-4 integrator, storing the result in-place in the y property.(c) 2015 Ricky Reusser. MIT License